skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gottlieb, Ore"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Building on a general relativistic magnetohydrodynamic simulation of a short gamma-ray burst (sGRB) jet with initial magnetizationσ0 = 150, propagating through the dynamical ejecta from a binary neutron star merger, we identify regions of energy dissipation driven by magnetic reconnection and collisionless subshocks within different scenarios. We solve the transport equations for photons, electrons, protons, neutrinos, and intermediate particles up to the photosphere, accounting for all relevant radiative processes, including electron and proton acceleration, and investigate the potential impact of magnetic reconnection occurring in different regions along the jet. We find the photon spectra undergo nonthermal modifications below the photosphere, observable in both on-axis and off-axis emission directions, as well as across different scenarios of energy dissipation and subsequent particle acceleration. Interestingly, the spectral index of the photon energy distribution can vary at most by ∼20% across all different dissipation scenarios. Depending on the dissipation mechanism at play, neutrino signatures may accompany the photon signal, pointing to efficient proton acceleration and shedding light on jet physics. Although our findings are based on one jet simulation, they point to a potential universal origin of the nonthermal features of the Band spectrum observed in sGRBs. 
    more » « less
    Free, publicly-accessible full text available April 3, 2026
  2. Abstract We expand the theoretical framework by O. Gottlieb et al., which connects binary merger populations with long and short binary gamma-ray bursts (lbGRBs and sbGRBs, respectively), incorporating kilonovae (KNe) as a key diagnostic tool. We show that lbGRBs, powered by massive accretion disks around black holes (BHs), should be accompanied by bright, red KNe. In contrast, sbGRBs—if also powered by BHs—would produce fainter, red KNe, potentially biasing against their detection. However, magnetized hypermassive neutron star (HMNS) remnants that precede BH formation can produce jets with power (PNS ≈ 1051erg s−1) and Lorentz factor (Γ > 10) likely compatible with sbGRB observations, and would result in distinctly bluer KNe, offering a pathway to identifying the sbGRB central engine. Recent modeling by J. C. Rastinejad et al. found luminous red KNe consistently accompany lbGRBs, supporting their origin in BH-massive disk systems, likely following a short-lived HMNS phase. The preferential association of sbGRBs with comparably luminous KNe argues against the BH engine hypothesis for sbGRBs, while the bluer hue of these KNe provides additional support for an HMNS-driven mechanism. Within this framework, BH–NS mergers likely contribute exclusively to the lbGRB population with red KNe. Our findings suggest that GW170817 may, in fact, have been an lbGRB to on-axis observers. Finally, we discuss major challenges faced by alternative lbGRB progenitor models, such as white dwarf–NS or white dwarf–BH mergers and accretion-induced collapse forming magnetars, which fail to align with observed GRB timescales, energies, and KN properties. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. Abstract Collapsars—rapidly rotating stellar cores that form black holes—can power gamma-ray bursts and are proposed to be key contributors to the production of heavy elements in the Universe via the rapid neutron capture process (r-process). Previous neutrino-transport collapsar simulations have been unable to unbind neutron-rich material from the disk. However, these simulations have not included sufficiently strong magnetic fields and the black hole (BH), both of which are essential for launching mass outflows. We presentνh-amr, a novel neutrino-transport general relativistic magnetohydrodynamic (νGRMHD) code, which we use to perform the first 3D globalνGRMHD collapsar simulations. We find a self-consistent formation of a weakly magnetized dense accretion disk, which has sufficient time to neutronize. Eventually, substantial magnetic flux accumulates near the BH, becomes dynamically important, leads to a magnetically arrested disk (MAD), and unbinds some of the neutron-rich material. However, the strong flux also hinders accretion, lowers density, and increases neutrino-cooling timescale, which prevents further disk neutronization. Typical collapsar progenitors with mass accretion rates, M ̇ 0.1 1 M s - 1 , do not produce significant neutron-rich (Ye < 0.25) ejecta. However, we find that MADs at higher mass accretion rates, M ̇ few M s - 1 (e.g., for more centrally concentrated progenitors), can unbindMej ≲ Mof neutron-rich ejecta. The outflows inflate a shocked cocoon that mixes with the infalling neutron-poor stellar gas and raises the final outflowYe; however, the finalr-process yield may be determined earlier at the point of neutron capture freeze-out. Future work will explore under what conditions more typical collapsar engines becomer-process factories. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026
  5. Abstract Superluminous supernovae (SLSNe) radiate ≳10–100 times more energy than ordinary stellar explosions, implicating a novel power source behind these enigmatic events. One frequently discussed source, particularly for hydrogen-poor (Type I) SLSNe, is a central engine such as a millisecond magnetar or accreting black hole. Both black hole and magnetar engines are expected to channel a fraction of their luminosity into a collimated relativistic jet. Using 3D relativistic hydrodynamical simulations, we explore the interaction of a relativistic jet, endowed with a luminosityLj≈ 1045.5erg s−1and durationteng≈ 10 days compatible with those needed to power SLSNe, launched into the envelope of the exploding star. The jet successfully breaks through the expanding ejecta, and its shocked cocoon powers ultraviolet/optical emission lasting several days after the explosion and reaching a peak luminosity ≳1044erg s−1, corresponding to a sizable fraction ofLj. This high radiative efficiency is the result of the modest adiabatic losses the cocoon experiences owing to the low optical depths of the enlarged ejecta at these late times, e.g., compared to the more compact stars in gamma-ray bursts. The luminosity and temperature of the cocoon emission match those of the “bumps” in SLSN light curves observed weeks prior to the optical maximum in many SLSNe. Confirmation of jet breakout signatures by future observations (e.g., days-long to weeks-long internal X-ray emission from the jet for on-axis observers, spectroscopy confirming large photosphere velocitiesv/c≳ 0.1, or detection of a radio afterglow) would offer strong evidence for central engines powering SLSNe. 
    more » « less
  6. Abstract Relativistic jets from a Kerr black hole (BH) following the core collapse of a massive star (“collapsar”) is a leading model for gamma-ray bursts (GRBs). However, the two key ingredients for a Blandford–Znajek-powered jet—rapid rotation and a strong magnetic field—seem mutually exclusive. Strong fields in the progenitor star’s core transport angular momentum outward more quickly, slowing down the core before collapse. Through innovative multidisciplinary modeling, we first use MESA stellar evolution models followed to core collapse to explicitly show that the small length scale of the instabilities—likely responsible for angular momentum transport in the core (e.g., Tayler–Spruit)—results in a lownetmagnetic flux fed to the BH horizon, far too small to power GRB jets. Instead, we propose a novel scenario in which collapsar BHs acquire their magnetic “hair” from their progenitor proto–neutron star (PNS), which is likely highly magnetized from an internal dynamo. We evaluate the conditions for the BH accretion disk to pin the PNS magnetosphere to its horizon immediately after the collapse. Our results show that the PNS spin-down energy released before collapse matches the kinetic energy of Type Ic-BL supernovae, while the nascent BH’s spin and magnetic flux produce jets consistent with observed GRB characteristics. We map our MESA models to 3D general-relativistic magnetohydrodynamic simulations and confirm that accretion disks confine the strong magnetic flux initiated near a rotating BH, enabling the launch of successful GRB jets, whereas a slower-spinning BH or one without a disk fails to do so. 
    more » « less
  7. Abstract The spin of a newly formed black hole (BH) at the center of a massive star evolves from its natal value due to two competing processes: accretion of gas angular momentum that increases the spin and extraction of BH angular momentum by outflows that decreases the spin. Ultimately, the final, equilibrium spin is set by a balance between both processes. In order for the BH to launch relativistic jets and power aγ-ray burst (GRB), the BH magnetic field needs to be dynamically important. Thus, we consider the case of a magnetically arrested disk (MAD) driving the spin evolution of the BH. By applying the semianalytic MAD BH spin evolution model of Lowell et al. to collapsars, we show that if the BH accretes ∼20% of its initial mass, its dimensionless spin inevitably reaches small values,a≲ 0.2. For such spins, and for mass accretion rates inferred from collapsar simulations, we show that our semianalytic model reproduces the energetics of typical GRB jets,Ljet∼ 1050erg s−1. We show that our semianalytic model reproduces the nearly constant power of typical GRB jets. If the MAD onset is delayed, this allows powerful jets at the high end of the GRB luminosity distribution,Ljet∼ 1052erg s−1, but the final spin remains low,a≲ 0.3. These results are consistent with the low spins inferred from gravitational wave detections of binary BH mergers. In a companion paper by Gottlieb et al., we use GRB observations to constrain the natal BH spin to bea≃ 0.2. 
    more » « less
  8. Abstract Collapsing stars constitute the main black hole (BH) formation channel, and are occasionally associated with the launch of relativistic jets that powerγ-ray bursts (GRBs). Thus, collapsars offer an opportunity to infer the natal (before spin-up/down by accretion) BH spin directly from observations. We show that once the BH saturates with a large-scale magnetic flux, the jet power is dictated by the BH spin and mass accretion rate. Core-collapse simulations by Halevi et al. and GRB observations favor stellar density profiles that yield an accretion rate of m ̇ 10 2 M s 1 , weakly dependent on time. This leaves the spin as the main factor that governs the jet power. By comparing the jet power to characteristic GRB luminosities, we find that the majority of BHs associated with jets are likely born slowly spinning with a dimensionless spin ofa≃ 0.2, ora≃ 0.5 for wobbling jets, with the main uncertainty originating in the unknownγ-ray radiative efficiency. This result could be applied to the entire core-collapse BH population, unless an anticorrelation between the stellar magnetic field and angular momentum is present. In a companion paper, Jacquemin-Ide et al., we show that regardless of the natal spin, the extraction of BH rotational energy leads to spin-down toa≲ 0.2, consistent with gravitational-wave observations. We verify our results by performing the first 3D general-relativistic magnetohydrodynamic simulations of collapsar jets with characteristic GRB energies, powered by slowly spinning BHs. We find that jets of typical GRB power struggle to escape from the star, providing the first numerical indication that many jets fail to generate a GRB. 
    more » « less
  9. Abstract Spinning supermassive black holes (BHs) in active galactic nuclei magnetically launch relativistic collimated outflows, or jets. Without angular momentum supply, such jets are thought to perish within 3 orders of magnitude in distance from the BH, well before reaching kiloparsec scales. We study the survival of such jets at the largest scale separation to date, via 3D general relativistic magnetohydrodynamic simulations of rapidly spinning BHs immersed into uniform zero-angular-momentum gas threaded by a weak vertical magnetic field. We place the gas outside the BH sphere of influence, or the Bondi radius, chosen to be much larger than the BH gravitational radius,RB= 103Rg. The BH develops dynamically important large-scale magnetic fields, forms a magnetically arrested disk (MAD), and launches relativistic jets that propagate well outsideRBand suppress BH accretion to 1.5% of the Bondi rate, M ̇ B . Thus, low-angular-momentum accretion in the MAD state can form large-scale jets in Fanaroff–Riley (FR) type I and II galaxies. Subsequently, the disk shrinks and exits the MAD state: barely a disk (BAD), it rapidly precesses, whips the jets around, globally destroys them, and lets 5%–10% of M ̇ B reach the BH. Thereafter, the disk starts rocking back and forth by angles 90°–180°: the rocking accretion disk (RAD) launches weak intermittent jets that spread their energy over a large area and suppress BH accretion to ≲2% M ̇ B . Because the BAD and RAD states tangle up the jets and destroy them well insideRB, they are promising candidates for the more abundant, but less luminous, class of FR0 galaxies. 
    more » « less
  10. Abstract Accreting supermassive black holes (SMBHs) produce highly magnetized relativistic jets that tend to collimate gradually as they propagate outward. However, recent radio interferometric observations of the 3C 84 galaxy reveal a stunning, cylindrical jet already at several hundred SMBH gravitational radii,r≳ 350rg. We explore how such extreme collimation emerges via a suite of 3D general relativistic magnetohydrodynamic simulations. We consider an SMBH surrounded by a magnetized torus immersed in a constant-density ambient medium that starts at the edge of the SMBH sphere of influence, chosen to be much larger than the SMBH gravitational radius,rB= 103rg. We find that radiatively inefficient accretion flows (e.g., M87) produce winds that collimate the jets into parabolas near the black hole. After the disk winds stop collimating the jets atr≲rB, they turn conical. Once outsiderB, the jets run into the ambient medium and form backflows that collimate the jets into cylinders some distance beyondrB. Interestingly, for radiatively efficient accretion, as in 3C 84, the radiative cooling saps the energy out of the disk winds; at early times, they cannot efficiently collimate the jets, which skip the initial parabolic collimation stage, start out conical near the SMBH, and turn into cylinders already atr≃ 300rg, as observed in 3C 84. Over time, the jet power remains approximately constant, whereas the mass accretion rate increases; the winds grow in strength and start to collimate the jets, which become quasi-parabolic near the base, and the transition point to a nearly cylindrical jet profile moves outward while remaining insiderB
    more » « less